Papers
Topics
Authors
Recent
Search
2000 character limit reached

Modeling of the nonlinear flame response of a Bunsen-type flame via multi-layer perceptron

Published 11 Apr 2022 in physics.flu-dyn | (2204.05234v1)

Abstract: This paper demonstrates the ability of neural networks to reliably learn the nonlinear flame response of a laminar premixed flame, while carrying out only one unsteady CFD simulation. The system is excited with a broadband, low-pass filtered velocity signal that exhibits a uniform distribution of amplitudes within a predetermined range. The obtained time series of flow velocity upstream of the flame and heat release rate fluctuations are used to train the nonlinear model using a multi-layer perceptron. Several models with varying hyperparameters are trained and the dropout strategy is used as regularizer to avoid overfitting. The best performing model is subsequently used to compute the flame describing function (FDF) using mono-frequent excitations. In addition to accurately predicting the FDF, the trained neural network model also captures the presence of higher harmonics in the flame response. As a result, when coupled with an acoustic solver, the obtained neural network model is better suited than a classical FDF model to predict limit cycle oscillations characterized by more than one frequency. The latter is demonstrated in the final part of the present study. We show that the RMS value of the predicted acoustic oscillations together with the associated dominant frequencies are in excellent agreement with CFD reference data.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.