Consistency of Monte Carlo Estimators for Risk-Neutral PDE-Constrained Optimization (2204.04809v2)
Abstract: We apply the sample average approximation (SAA) method to risk-neutral optimization problems governed by nonlinear partial differential equations (PDEs) with random inputs. We analyze the consistency of the SAA optimal values and SAA solutions. Our analysis exploits problem structure in PDE-constrained optimization problems, allowing us to construct deterministic, compact subsets of the feasible set that contain the solutions to the risk-neutral problem and eventually those to the SAA problems. The construction is used to study the consistency using results established in the literature on stochastic programming. The assumptions of our framework are verified on three nonlinear optimization problems under uncertainty.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.