Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Confidence Score for Unsupervised Foreground Background Separation of Document Images (2204.04044v1)

Published 3 Apr 2022 in cs.CV

Abstract: Foreground-background separation is an important problem in document image analysis. Popular unsupervised binarization methods (such as the Sauvola's algorithm) employ adaptive thresholding to classify pixels as foreground or background. In this work, we propose a novel approach for computing confidence scores of the classification in such algorithms. This score provides an insight of the confidence level of the prediction. The computational complexity of the proposed approach is the same as the underlying binarization algorithm. Our experiments illustrate the utility of the proposed scores in various applications like document binarization, document image cleanup, and texture addition.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.