Papers
Topics
Authors
Recent
Search
2000 character limit reached

Lightweight starshade position sensing with convolutional neural networks and simulation-based inference

Published 8 Apr 2022 in astro-ph.IM | (2204.03853v1)

Abstract: Starshades are a leading technology to enable the direct detection and spectroscopic characterization of Earth-like exoplanets. To keep the starshade and telescope aligned over large separations, reliable sensing of the peak of the diffracted light of the occluded star is required. Current techniques rely on image matching or model fitting, both of which put substantial computational burdens on resource-limited spacecraft computers. We present a lightweight image processing method based on a convolutional neural network paired with a simulation-based inference technique to estimate the position of the spot of Arago and its uncertainty. The method achieves an accuracy of a few centimeters across the entire pupil plane, while only requiring 1.6 MB in stored data structures and 5.3 MFLOPs (million floating point operations) per image at test time. By deploying our method at the Princeton Starshade Testbed, we demonstrate that the neural network can be trained on simulated images and used on real images, and that it can successfully be integrated in the control system for closed-loop formation flying.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.