Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Canonical partition function and center symmetry breaking in finite density lattice gauge theories (2204.03627v2)

Published 7 Apr 2022 in hep-lat

Abstract: We study the nature of the phase transition of lattice gauge theories at high temperature and high density by focusing on the probability distribution function, which represents the probability that a certain density will be realized in a heat bath. The probability distribution function is obtained by creating a canonical partition function fixing the number of particles from the grand partition function. However, if the Z_3 center symmetry, which is important for understanding the finite temperature phase transition of SU(3) lattice gauge theory, is maintained on a finite lattice, the probability distribution function is always zero, except when the number of particles is a multiple of 3. For U(1) lattice gauge theory, this problem is more serious. The probability distribution becomes zero when the particle number is nonzero. This problem is essentially the same as the problem that the expectation value of the Polyakov loop is always zero when calculating with finite volume. In this study, we propose a solution to this problem. We also propose a method to avoid the sign problem, which is an important problem at finite density, using the center symmetry. In the case of U(1) lattice gauge theory with heavy fermions, numerical simulations are actually performed, and we demonstrate that the probability distribution function at a finite density can be calculated by the method proposed in this study. Furthermore, the application of this method to QCD is discussed.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.