Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Quantum variational learning for quantum error-correcting codes (2204.03560v3)

Published 7 Apr 2022 in quant-ph

Abstract: Quantum error correction is believed to be a necessity for large-scale fault-tolerant quantum computation. In the past two decades, various constructions of quantum error-correcting codes (QECCs) have been developed, leading to many good code families. However, the majority of these codes are not suitable for near-term quantum devices. Here we present VarQEC, a noise-resilient variational quantum algorithm to search for quantum codes with a hardware-efficient encoding circuit. The cost functions are inspired by the most general and fundamental requirements of a QECC, the Knill-Laflamme conditions. Given the target noise channel (or the target code parameters) and the hardware connectivity graph, we optimize a shallow variational quantum circuit to prepare the basis states of an eligible code. In principle, VarQEC can find quantum codes for any error model, whether additive or non-additive, degenerate or non-degenerate, pure or impure. We have verified its effectiveness by (re)discovering some symmetric and asymmetric codes, e.g., $((n,2{n-6},3))_2$ for $n$ from 7 to 14. We also found new $((6,2,3))_2$ and $((7,2,3))_2$ codes that are not equivalent to any stabilizer code, and extensive numerical evidence with VarQEC suggests that a $((7,3,3))_2$ code does not exist. Furthermore, we found many new channel-adaptive codes for error models involving nearest-neighbor correlated errors. Our work sheds new light on the understanding of QECC in general, which may also help to enhance near-term device performance with channel-adaptive error-correcting codes.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.