Papers
Topics
Authors
Recent
2000 character limit reached

Operational classical mechanics: Holonomic Systems (2204.02955v2)

Published 6 Apr 2022 in quant-ph, math-ph, and math.MP

Abstract: We construct an operational formulation of classical mechanics without presupposing previous results from analytical mechanics. In doing so, several concepts from analytical mechanics will be rediscovered from an entirely new perspective. We start by expressing the basic concepts of the position and velocity of point particles as the eigenvalues of self-adjoint operators acting on a suitable Hilbert space. The concept of Holonomic constraint is shown to be equivalent to a restriction to a linear subspace of the free Hilbert space. The principal results we obtain are: (1) the Lagrange equations of motion are derived without the use of D'Alembert or Hamilton principles, (2) the constraining forces are obtained without the use of Lagrange multipliers, (3) the passage from a position-velocity to a position-momentum description of the movement is done without the use of a Legendre transformation, (4) the Koopman-von Neumann theory is obtained as a result of our ab initio operational approach, (5) previous work on the Schwinger action principle for classical systems is generalized to include holonomic constraints.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 4 likes about this paper.