Visibility, invisibility and unique recovery of inverse electromagnetic problems with conical singularities (2204.02835v1)
Abstract: In this paper, we study time-harmonic electromagnetic scattering in two scenarios, where the anomalous scatterer is either a pair of electromagnetic sources or an inhomogeneous medium, both with compact supports. We are mainly concerned with the geometrical inverse scattering problem of recovering the support of the scatterer, independent of its physical contents, by a single far-field measurement. It is assumed that the support of the scatterer (locally) possesses a conical singularity. We establish a local characterisation of the scatterer when invisibility/transparency occurs, showing that its characteristic parameters must vanish locally around the conical point. Using this characterisation, we establish several local and global uniqueness results for the aforementioned inverse scattering problems, showing that visibility must imply unique recovery. In the process, we also establish the local vanishing property of the electromagnetic transmission eigenfunctions around a conical point under the H\"older regularity or a regularity condition in terms of Herglotz approximation.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.