Papers
Topics
Authors
Recent
2000 character limit reached

Training-Free Robust Multimodal Learning via Sample-Wise Jacobian Regularization (2204.02485v1)

Published 5 Apr 2022 in cs.CV, cs.LG, cs.SD, and eess.AS

Abstract: Multimodal fusion emerges as an appealing technique to improve model performances on many tasks. Nevertheless, the robustness of such fusion methods is rarely involved in the present literature. In this paper, we propose a training-free robust late-fusion method by exploiting conditional independence assumption and Jacobian regularization. Our key is to minimize the Frobenius norm of a Jacobian matrix, where the resulting optimization problem is relaxed to a tractable Sylvester equation. Furthermore, we provide a theoretical error bound of our method and some insights about the function of the extra modality. Several numerical experiments on AV-MNIST, RAVDESS, and VGGsound demonstrate the efficacy of our method under both adversarial attacks and random corruptions.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.