Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 421 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Ordinal Optimization Through Multi-objective Reformulation (2204.02003v1)

Published 5 Apr 2022 in math.OC and math.CO

Abstract: We analyze combinatorial optimization problems with ordinal, i.e., non-additive, objective functions that assign categories (like good, medium and bad) rather than cost coefficients to the elements of feasible solutions. We review different optimality concepts for ordinal optimization problems and discuss their similarities and differences. We then focus on two prevalent optimality concepts that are shown to be equivalent. Our main result is a bijective linear transformation that transforms ordinal optimization problems to associated standard multi-objective optimization problems with binary cost coefficients. Since this transformation preserves all properties of the underlying problem, problem-specific solution methods remain applicable. A prominent example is dynamic programming and BeLLMan's principle of optimality, that can be applied, e.g., to ordinal shortest path and ordinal knapsack problems. We extend our results to multi-objective optimization problems that combine ordinal and real-valued objective functions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube