Papers
Topics
Authors
Recent
2000 character limit reached

Cluster-based ensemble learning for wind power modeling with meteorological wind data (2204.00646v1)

Published 1 Apr 2022 in cs.LG

Abstract: Optimal implementation and monitoring of wind energy generation hinge on reliable power modeling that is vital for understanding turbine control, farm operational optimization, and grid load balance. Based on the idea of similar wind condition leads to similar wind power; this paper constructs a modeling scheme that orderly integrates three types of ensemble learning algorithms, bagging, boosting, and stacking, and clustering approaches to achieve optimal power modeling. It also investigates applications of different clustering algorithms and methodology for determining cluster numbers in wind power modeling. The results reveal that all ensemble models with clustering exploit the intrinsic information of wind data and thus outperform models without it by approximately 15% on average. The model with the best farthest first clustering is computationally rapid and performs exceptionally well with an improvement of around 30%. The modeling is further boosted by about 5% by introducing stacking that fuses ensembles with varying clusters. The proposed modeling framework thus demonstrates promise by delivering efficient and robust modeling performance.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.