Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

WavFT: Acoustic model finetuning with labelled and unlabelled data (2204.00348v1)

Published 1 Apr 2022 in cs.CL, cs.SD, and eess.AS

Abstract: Unsupervised and self-supervised learning methods have leveraged unlabelled data to improve the pretrained models. However, these methods need significantly large amount of unlabelled data and the computational cost of training models with such large amount of data can be prohibitively high. We address this issue by using unlabelled data during finetuning, instead of pretraining. We propose acoustic model finetuning (FT) using labelled and unlabelled data. The model is jointly trained to learn representations to classify senones, as well as learn contextual acoustic representations. Our training objective is a combination of cross entropy loss, suitable for classification task, and contrastive loss, suitable to learn acoustic representations. The proposed approach outperforms conventional finetuning with 11.2% and 9.19% word error rate relative (WERR) reduction on Gujarati and Bengali languages respectively.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube