Papers
Topics
Authors
Recent
2000 character limit reached

Distance bounds for generalized bicycle codes (2203.17216v1)

Published 31 Mar 2022 in quant-ph, math-ph, and math.MP

Abstract: Generalized bicycle (GB) codes is a class of quantum error-correcting codes constructed from a pair of binary circulant matrices. Unlike for other simple quantum code ans\"atze, unrestricted GB codes may have linear distance scaling. In addition, low-density parity-check GB codes have a naturally overcomplete set of low-weight stabilizer generators, which is expected to improve their performance in the presence of syndrome measurement errors. For such GB codes with a given maximum generator weight $w$, we constructed upper distance bounds by mapping them to codes local in $D\le w-1$ dimensions, and lower existence bounds which give $d\ge {\cal O}({n}{1/2})$. We have also done an exhaustive enumeration of GB codes for certain prime circulant sizes in a family of two-qubit encoding codes with row weights 4, 6, and 8; the observed distance scaling is consistent with $A(w){n}{1/2}+B(w)$, where $n$ is the code length and $A(w)$ is increasing with $w$.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.