Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

$q$-Rational Reduction and $q$-Analogues of Series for $π$ (2203.16047v2)

Published 30 Mar 2022 in math.CO and math.NT

Abstract: In this paper, we present a $q$-analogue of the polynomial reduction which was originally developed for hypergeometric terms. Using the $q$-Gosper representation, we describe the structure of rational functions that are summable when multiplied with a given $q$-hypergeometric term. The structure theorem enables us to generalize the $q$-polynomial reduction to the rational case, which can be used in the automatic proof and discovery of $q$-identities. As applications, several $q$-analogues of series for $\pi$ are presented.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.