Papers
Topics
Authors
Recent
2000 character limit reached

COMPASS: Contrastive Multimodal Pretraining for Autonomous Systems (2203.15788v1)

Published 20 Feb 2022 in cs.RO

Abstract: Learning representations that generalize across tasks and domains is challenging yet necessary for autonomous systems. Although task-driven approaches are appealing, designing models specific to each application can be difficult in the face of limited data, especially when dealing with highly variable multimodal input spaces arising from different tasks in different environments.We introduce the first general-purpose pretraining pipeline, COntrastive Multimodal Pretraining for AutonomouS Systems (COMPASS), to overcome the limitations of task-specific models and existing pretraining approaches. COMPASS constructs a multimodal graph by considering the essential information for autonomous systems and the properties of different modalities. Through this graph, multimodal signals are connected and mapped into two factorized spatio-temporal latent spaces: a "motion pattern space" and a "current state space." By learning from multimodal correspondences in each latent space, COMPASS creates state representations that models necessary information such as temporal dynamics, geometry, and semantics. We pretrain COMPASS on a large-scale multimodal simulation dataset TartanAir \cite{tartanair2020iros} and evaluate it on drone navigation, vehicle racing, and visual odometry tasks. The experiments indicate that COMPASS can tackle all three scenarios and can also generalize to unseen environments and real-world data.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.