Lusztig Factorization Dynamics of the Full Kostant-Toda Lattices
Abstract: We study extensions of the classical Toda lattices at several different space-time scales. These extensions are from the classical tridiagonal phase spaces to the phase space of full Hessenberg matrices, referred to as the Full Kostant-Toda Lattice. Our formulation makes it natural to make further Lie-theoretic generalizations to dual spaces of Borel Lie algebras. Our study brings into play factorizations of Loewner-Whitney type in terms of canonical coordinatizations due to Lusztig. Using these coordinates we formulate precise conditions for the well-posedness of the dynamics at the different space-time scales. Along the way we derive a novel, minimal box-ball system for Full Toda that doesn't involve any capacities or colorings, as well as an extension of O'Connell's ODEs to Full Toda.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.