Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Random coordinate descent methods for nonseparable composite optimization (2203.14368v2)

Published 27 Mar 2022 in math.OC

Abstract: In this paper we consider large-scale composite optimization problems having the objective function formed as a sum of two terms (possibly nonconvex), one has (block) coordinate-wise Lipschitz continuous gradient and the other is differentiable but nonseparable. Under these general settings we derive and analyze two new coordinate descent methods. The first algorithm, referred to as coordinate proximal gradient method, considers the composite form of the objective function, while the other algorithm disregards the composite form of the objective and uses the partial gradient of the full objective, yielding a coordinate gradient descent scheme with novel adaptive stepsize rules. We prove that these new stepsize rules make the coordinate gradient scheme a descent method, provided that additional assumptions hold for the second term in the objective function. We present a complete worst-case complexity analysis for these two new methods in both, convex and nonconvex settings, provided that the (block) coordinates are chosen random or cyclic. Preliminary numerical results also confirm the efficiency of our two algorithms on practical problems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.