SMARAGD: Learning SMatch for Accurate and Rapid Approximate Graph Distance (2203.13226v2)
Abstract: The similarity of graph structures, such as Meaning Representations (MRs), is often assessed via structural matching algorithms, such as Smatch (Cai and Knight, 2013). However, Smatch involves a combinatorial problem that suffers from NP-completeness, making large-scale applications, e.g., graph clustering or search, infeasible. To alleviate this issue, we learn SMARAGD: Semantic Match for Accurate and Rapid Approximate Graph Distance. We show the potential of neural networks to approximate Smatch scores, i) in linear time using a machine translation framework to predict alignments, or ii) in constant time using a Siamese CNN to directly predict Smatch scores. We show that the approximation error can be substantially reduced through data augmentation and graph anonymization.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.