Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Post-selection inference for e-value based confidence intervals (2203.12572v4)

Published 23 Mar 2022 in math.ST, stat.ME, and stat.TH

Abstract: Suppose that one can construct a valid $(1-\delta)$-confidence interval (CI) for each of $K$ parameters of potential interest. If a data analyst uses an arbitrary data-dependent criterion to select some subset $S$ of parameters, then the aforementioned CIs for the selected parameters are no longer valid due to selection bias. We design a new method to adjust the intervals in order to control the false coverage rate (FCR). The main established method is the "BY procedure" by Benjamini and Yekutieli (JASA, 2005). The BY guarantees require certain restrictions on the selection criterion and on the dependence between the CIs. We propose a new simple method which, in contrast, is valid under any dependence structure between the original CIs, and any (unknown) selection criterion, but which only applies to a special, yet broad, class of CIs that we call e-CIs. To elaborate, our procedure simply reports $(1-\delta|S|/K)$-CIs for the selected parameters, and we prove that it controls the FCR at $\delta$ for confidence intervals that implicitly invert e-values; examples include those constructed via supermartingale methods, via universal inference, or via Chernoff-style bounds, among others. The e-BY procedure is admissible, and recovers the BY procedure as a special case via a particular calibrator. Our work also has implications for post-selection inference in sequential settings, since it applies at stopping times, to continuously-monitored confidence sequences, and under bandit sampling. We demonstrate the efficacy of our procedure using numerical simulations and real A/B testing data from Twitter.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.