Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Levenberg-Marquardt algorithm for sparse identification of dynamical systems (2203.12379v1)

Published 23 Mar 2022 in eess.SY and cs.SY

Abstract: Low complexity of a system model is essential for its use in real-time applications. However, sparse identification methods commonly have stringent requirements that exclude them from being applied in an industrial setting. In this paper, we introduce a flexible method for the sparse identification of dynamical systems described by ordinary differential equations. Our method relieves many of the requirements imposed by other methods that relate to the structure of the model and the data set, such as fixed sampling rates, full state measurements, and linearity of the model. The Levenberg-Marquardt algorithm is used to solve the identification problem. We show that the Levenberg-Marquardt algorithm can be written in a form that enables parallel computing, which greatly diminishes the time required to solve the identification problem. An efficient backward elimination strategy is presented to construct a lean system model.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube