A Levenberg-Marquardt algorithm for sparse identification of dynamical systems (2203.12379v1)
Abstract: Low complexity of a system model is essential for its use in real-time applications. However, sparse identification methods commonly have stringent requirements that exclude them from being applied in an industrial setting. In this paper, we introduce a flexible method for the sparse identification of dynamical systems described by ordinary differential equations. Our method relieves many of the requirements imposed by other methods that relate to the structure of the model and the data set, such as fixed sampling rates, full state measurements, and linearity of the model. The Levenberg-Marquardt algorithm is used to solve the identification problem. We show that the Levenberg-Marquardt algorithm can be written in a form that enables parallel computing, which greatly diminishes the time required to solve the identification problem. An efficient backward elimination strategy is presented to construct a lean system model.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.