Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Efficient Fully Distributed Federated Learning with Adaptive Local Links (2203.12281v1)

Published 23 Mar 2022 in cs.LG and eess.SP

Abstract: Nowadays, data-driven, machine and deep learning approaches have provided unprecedented performance in various complex tasks, including image classification and object detection, and in a variety of application areas, like autonomous vehicles, medical imaging and wireless communications. Traditionally, such approaches have been deployed, along with the involved datasets, on standalone devices. Recently, a shift has been observed towards the so-called Edge Machine Learning, in which centralized architectures are adopted that allow multiple devices with local computational and storage resources to collaborate with the assistance of a centralized server. The well-known federated learning approach is able to utilize such architectures by allowing the exchange of only parameters with the server, while keeping the datasets private to each contributing device. In this work, we propose a fully distributed, diffusion-based learning algorithm that does not require a central server and propose an adaptive combination rule for the cooperation of the devices. By adopting a classification task on the MNIST dataset, the efficacy of the proposed algorithm over corresponding counterparts is demonstrated via the reduction of the number of collaboration rounds required to achieve an acceptable accuracy level in non- IID dataset scenarios.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.