Papers
Topics
Authors
Recent
2000 character limit reached

Efficient simulation of Gottesman-Kitaev-Preskill states with Gaussian circuits (2203.11182v3)

Published 21 Mar 2022 in quant-ph

Abstract: We study the classical simulatability of Gottesman-Kitaev-Preskill (GKP) states in combination with arbitrary displacements, a large set of symplectic operations and homodyne measurements. For these types of circuits, neither continuous-variable theorems based on the non-negativity of quasi-probability distributions nor discrete-variable theorems such as the Gottesman-Knill theorem can be employed to assess the simulatability. We first develop a method to evaluate the probability density function corresponding to measuring a single GKP state in the position basis following arbitrary squeezing and a large set of rotations. This method involves evaluating a transformed Jacobi theta function using techniques from analytic number theory. We then use this result to identify two large classes of multimode circuits which are classically efficiently simulatable and are not contained by the GKP encoded Clifford group. Our results extend the set of circuits previously known to be classically efficiently simulatable.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.