An integrated Auto Encoder-Block Switching defense approach to prevent adversarial attacks (2203.10930v1)
Abstract: According to recent studies, the vulnerability of state-of-the-art Neural Networks to adversarial input samples has increased drastically. A neural network is an intermediate path or technique by which a computer learns to perform tasks using Machine learning algorithms. Machine Learning and Artificial Intelligence model has become a fundamental aspect of life, such as self-driving cars [1], smart home devices, so any vulnerability is a significant concern. The smallest input deviations can fool these extremely literal systems and deceive their users as well as administrator into precarious situations. This article proposes a defense algorithm that utilizes the combination of an auto-encoder [3] and block-switching architecture. Auto-coder is intended to remove any perturbations found in input images whereas the block switching method is used to make it more robust against White-box attacks. The attack is planned using FGSM [9] model, and the subsequent counter-attack by the proposed architecture will take place thereby demonstrating the feasibility and security delivered by the algorithm.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.