Indirect Inference for Nonlinear Panel Models with Fixed Effects (2203.10683v2)
Abstract: Fixed effect estimators of nonlinear panel data models suffer from the incidental parameter problem. This leads to two undesirable consequences in applied research: (1) point estimates are subject to large biases, and (2) confidence intervals have incorrect coverages. This paper proposes a simulation-based method for bias reduction. The method simulates data using the model with estimated individual effects, and finds values of parameters by equating fixed effect estimates obtained from observed and simulated data. The asymptotic framework provides consistency, bias correction, and asymptotic normality results. An application and simulations to female labor force participation illustrates the finite-sample performance of the method.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.