Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Improving Heuristic-based Process Discovery Methods by Detecting Optimal Dependency Graphs (2203.10145v1)

Published 18 Mar 2022 in cs.AI

Abstract: Heuristic-based methods are among the most popular methods in the process discovery area. This category of methods is composed of two main steps: 1) discovering a dependency graph 2) determining the split/join patterns of the dependency graph. The current dependency graph discovery techniques of heuristic-based methods select the initial set of graph arcs according to dependency measures and then modify the set regarding some criteria. This can lead to selecting the non-optimal set of arcs. Also, the modifications can result in modeling rare behaviors and, consequently, low precision and non-simple process models. Thus, constructing dependency graphs through selecting the optimal set of arcs has a high potential for improving graphs quality. Hence, this paper proposes a new integer linear programming model that determines the optimal set of graph arcs regarding dependency measures. Simultaneously, the proposed method can eliminate some other issues that the existing methods cannot handle completely; i.e., even in the presence of loops, it guarantees that all tasks are on a path from the initial to the final tasks. This approach also allows utilizing domain knowledge by introducing appropriate constraints, which can be a practical advantage in real-world problems. To assess the results, we modified two existing methods of evaluating process models to make them capable of measuring the quality of dependency graphs. According to assessments, the outputs of the proposed method are superior to the outputs of the most prominent dependency graph discovery methods in terms of fitness, precision, and especially simplicity.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.