Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Markov chains with doubly stochastic transition matrices and application to a sequence of non-selective quantum measurements (2203.09468v1)

Published 16 Mar 2022 in quant-ph

Abstract: A time-dependent finite-state Markov chain that uses doubly stochastic transition matrices, is considered. Entropic quantities that describe the randomness of the probability vectors, and also the randomness of the discrete paths, are studied. Universal convex polytopes are introduced which contain all future probability vectors, and which are based on the Birkhoff-von Neumann expansion for doubly stochastic matrices. They are universal in the sense that they depend only on the present probability vector, and are independent of the doubly stochastic transition matrices that describe time evolution in the future. It is shown that as the discrete time increases these convex polytopes shrink, and the minimum entropy of the probability vectors in them increases. These ideas are applied to a sequence of non-selective measurements (with different projectors in each step) on a quantum system with $d$-dimensional Hilbert space. The unitary time evolution in the intervals between the measurements, is taken into account. The non-selective measurements destroy stroboscopically the non-diagonal elements in the density matrix. This hermaphrodite' system is an interesting combination of a classical probabilistic system (immediately after the measurements) and a quantum system (in the intervals between the measurements). Various examples are discussed. In the ergodic example, the system follows asymptotically all discrete paths with the same probability. In the example of rapidly repeated non-selective measurements, we get the well known quantum Zeno effect withfrozen discrete paths' (presented here as a biproduct of our general methodology based on Markov chains with doubly stochastic transition matrices).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.