Papers
Topics
Authors
Recent
2000 character limit reached

Intrinsic randomness under general quantum measurements (2203.08624v1)

Published 16 Mar 2022 in quant-ph

Abstract: Quantum measurements can produce randomness arising from the uncertainty principle. When measuring a state with von Neumann measurements, the intrinsic randomness can be quantified by the quantum coherence of the state on the measurement basis. Unlike projection measurements, there are additional and possibly hidden degrees of freedom in apparatus for generic measurements. We propose an adversary scenario for general measurements with arbitrary input states, based on which, we characterize the intrinsic randomness. Interestingly, we discover that under certain measurements, such as the symmetric and information-complete measurement, all states have nonzero randomness, inspiring a new design of source-independent random number generators without state characterization. Furthermore, our results show that intrinsic randomness can quantify coherence under general measurements, which generalizes the result in the standard resource theory of state coherence.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.