Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A machine-learning photometric classifier for massive stars in nearby galaxies I. The method (2203.08125v2)

Published 15 Mar 2022 in astro-ph.SR, astro-ph.GA, and astro-ph.IM

Abstract: (abridged) Mass loss is a key parameter in the evolution of massive stars, with discrepancies between theory and observations and with unknown importance of the episodic mass loss. To address this we need increased numbers of classified sources stars spanning a range of metallicity environments. We aim to remedy the situation by applying machine learning techniques to recently available extensive photometric catalogs. We used IR/Spitzer and optical/Pan-STARRS, with Gaia astrometric information, to compile a large catalog of known massive stars in M31 and M33, which were grouped in Blue, Red, Yellow, B[e] supergiants, Luminous Blue Variables, Wolf-Rayet, and background galaxies. Due to the high imbalance, we implemented synthetic data generation to populate the underrepresented classes and improve separation by undersampling the majority class. We built an ensemble classifier using color indices. The probabilities from Support Vector Classification, Random Forests, and Multi-layer Perceptron were combined for the final classification. The overall weighted balanced accuracy is ~83%, recovering Red supergiants at ~94%, Blue/Yellow/B[e] supergiants and background galaxies at ~50-80%, Wolf-Rayets at ~45%, and Luminous Blue Variables at ~30%, mainly due to their small sample sizes. The mixing of spectral types (no strict boundaries in their color indices) complicates the classification. Independent application to IC 1613, WLM, and Sextans A galaxies resulted in an overall lower accuracy of ~70%, attributed to metallicity and extinction effects. The missing data imputation was explored using simple replacement with mean values and an iterative imputor, which proved more capable. We also found that r-i and y-[3.6] were the most important features. Our method, although limited by the sampling of the feature space, is efficient in classifying sources with missing data and at lower metallicitites.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube