Papers
Topics
Authors
Recent
2000 character limit reached

Exploring Customer Price Preference and Product Profit Role in Recommender Systems

Published 13 Mar 2022 in cs.IR, cs.AI, and cs.LG | (2203.06641v1)

Abstract: Most of the research in the recommender systems domain is focused on the optimization of the metrics based on historical data such as Mean Average Precision (MAP) or Recall. However, there is a gap between the research and industry since the leading Key Performance Indicators (KPIs) for businesses are revenue and profit. In this paper, we explore the impact of manipulating the profit awareness of a recommender system. An average e-commerce business does not usually use a complicated recommender algorithm. We propose an adjustment of a predicted ranking for score-based recommender systems and explore the effect of the profit and customers' price preferences on two industry datasets from the fashion domain. In the experiments, we show the ability to improve both the precision and the generated recommendations' profit. Such an outcome represents a win-win situation when e-commerce increases the profit and customers get more valuable recommendations.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.