Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Optimal Quantum State Tomography with Noisy Gates (2203.05677v3)

Published 10 Mar 2022 in quant-ph and cond-mat.mes-hall

Abstract: Quantum state tomography (QST) represents an essential tool for the characterization, verification, and validation (QCVV) of quantum processors. Only for a few idealized scenarios, there are analytic results for the optimal measurement set for QST. E.g., in a setting of non-degenerate measurements, an optimal minimal set of measurement operators for QST has eigenbases which are mutually unbiased. However, in other set-ups, dependent on the rank of the projection operators and the size of the quantum system, the optimal choice of measurements for efficient QST needs to be numerically approximated. We have generalized this problem by introducing the framework of customized efficient QST. Here we extend customized QST and look for the optimal measurement set for QST in the case where some of the quantum gates applied in the measurement process are noisy. To achieve this, we use two distinct noise models: first, the depolarizing channel, and second, over- and under-rotation in single-qubit and to two-qubit gates (for further information, please see Methods). We demonstrate the benefit of using entangling gates for the efficient QST measurement schemes for two qubits at realistic noise levels, by comparing the fidelity of reconstruction of our optimized QST measurement set to the state-of-the-art scheme using only product bases.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.