Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Earthquake Location and Magnitude Estimation with Graph Neural Networks (2203.05144v1)

Published 10 Mar 2022 in physics.geo-ph

Abstract: We solve the traditional problems of earthquake location and magnitude estimation through a supervised learning approach, where we train a Graph Neural Network to predict estimates directly from input pick data, and each input allows a distinct seismic network with variable number of stations and positions. We train the model using synthetic simulations from assumed travel-time and amplitude-distance attenuation models. The architecture uses one graph to represent the station set, and another to represent the model space. The input includes theoretical predictions of data, given model parameters, and the adjacency matrices of the graphs defined link spatially local elements. As we show, graph convolutions on this combined representation are highly effective at inference, data fusion, and outlier suppression. We compare our results with traditional methods and observe favorable performance.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube