Papers
Topics
Authors
Recent
Search
2000 character limit reached

A high-precision underwater object detection based on joint self-supervised deblurring and improved spatial transformer network

Published 9 Mar 2022 in cs.CV | (2203.04822v1)

Abstract: Deep learning-based underwater object detection (UOD) remains a major challenge due to the degraded visibility and difficulty to obtain sufficient underwater object images captured from various perspectives for training. To address these issues, this paper presents a high-precision UOD based on joint self-supervised deblurring and improved spatial transformer network. A self-supervised deblurring subnetwork is introduced into the designed multi-task learning aided object detection architecture to force the shared feature extraction module to output clean features for detection subnetwork. Aiming at alleviating the limitation of insufficient photos from different perspectives, an improved spatial transformer network is designed based on perspective transformation, adaptively enriching image features within the network. The experimental results show that the proposed UOD approach achieved 47.9 mAP in URPC2017 and 70.3 mAP in URPC2018, outperforming many state-of-the-art UOD methods and indicating the designed method is more suitable for UOD.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.