TTML: tensor trains for general supervised machine learning (2203.04352v1)
Abstract: This work proposes a novel general-purpose estimator for supervised ML based on tensor trains (TT). The estimator uses TTs to parametrize discretized functions, which are then optimized using Riemannian gradient descent under the form of a tensor completion problem. Since this optimization is sensitive to initialization, it turns out that the use of other ML estimators for initialization is crucial. This results in a competitive, fast ML estimator with lower memory usage than many other ML estimators, like the ones used for the initialization.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.