Mobius fluid dynamics on the unitary groups]{Möbius fluid dynamics on the unitary groups
Abstract: We study the nonrigid dynamics induced by the standard birational actions of the split unitary groups $G=O_{o}\left( n,n\right) $, $SU\left( n,n\right) $ and $Sp\left( n,n\right) $ on the compact classical Lie groups $M=SO_{n}$, $% U_{n}$ and $Sp_{n}$, respectively. More precisely, we study the geometry of $% G$ endowed with the kinetic energy metric associated with the action of $G$ on $M,$ assuming that $M$ carries its canonical bi-invariant Riemannian metric and has initially a homogeneous distribution of mass. By the least action principle, force free motions (thought of as curves in $G$) correspond to geodesics of $G$. The geodesic equation may be understood as an inviscid Burgers equation with M\"{o}bius constraints. We prove that the kinetic energy metric on $G$ is not complete and in particular not invariant, find symmetries and totally geodesic submanifolds of $G$ and address the question under which conditions geodesics of rigid motions are geodesics of $G$. Besides, we study equivalences with the dynamics of conformal and projective motions of the sphere in low dimensions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.