Papers
Topics
Authors
Recent
2000 character limit reached

Semilinear elliptic equations on manifolds with nonnegative Ricci curvature

Published 7 Mar 2022 in math.AP and math.DG | (2203.03345v2)

Abstract: In this paper we prove classification results for solutions to subcritical and critical semilinear elliptic equations with a nonnegative potential on noncompact manifolds with nonnegative Ricci curvature. We show in the subcritical case that all nonnegative solutions vanish identically. Moreover, under some natural assumptions, in the critical case we prove a strong rigidity result, namely we classify all nontrivial solutions showing that they exist only if the potential is constant and the manifold is isometric to the Euclidean space.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.