Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Effective divisors and Newton-Okounkov bodies of Hilbert schemes of points on toric surfaces (2203.02843v1)

Published 6 Mar 2022 in math.AG and math.CO

Abstract: We compute the (unbounded) Newton-Okounkov body of the Hilbert scheme of points on $\mathbb C2$. We obtain an upper bound for the Newton-Okounkov body of the Hilbert scheme of points on any smooth toric surface. We conjecture that this upper bound coincides with the exact Newton-Okounkov body for the Hilbert schemes of points on $\mathbb P2$, $\mathbb P1\times\mathbb P1$, and Hirzebruch surfaces. These results imply upper bounds for the effective cones of these Hilbert schemes, which are also conjecturally sharp in the above cases.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube