Papers
Topics
Authors
Recent
2000 character limit reached

Relative Entropy via Distribution of Observables (2203.01964v3)

Published 3 Mar 2022 in quant-ph, math-ph, math.MP, and math.OA

Abstract: We obtain formulas for Petz-R\'enyi and Umegaki relative entropy from the idea of distribution of a positive selfadjoint operator. Classical results on R\'enyi and Kullback-Leibler divergences are applied to obtain new results and new proofs for some known results about Petz-R\'enyi and Umegaki relative entropy. Most important among these, is a necessary and sufficient condition for the finiteness of the Petz-R\'enyi $\alpha$-relative entropy. All of the results presented here are valid in both finite and infinite dimensions. In particular, these results are valid for states in Fock spaces and thus are applicable to continuous variable quantum information theory.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.