Relative Entropy via Distribution of Observables (2203.01964v3)
Abstract: We obtain formulas for Petz-R\'enyi and Umegaki relative entropy from the idea of distribution of a positive selfadjoint operator. Classical results on R\'enyi and Kullback-Leibler divergences are applied to obtain new results and new proofs for some known results about Petz-R\'enyi and Umegaki relative entropy. Most important among these, is a necessary and sufficient condition for the finiteness of the Petz-R\'enyi $\alpha$-relative entropy. All of the results presented here are valid in both finite and infinite dimensions. In particular, these results are valid for states in Fock spaces and thus are applicable to continuous variable quantum information theory.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.