Papers
Topics
Authors
Recent
Search
2000 character limit reached

Coupling Deep Learning with Full Waveform Inversion

Published 3 Mar 2022 in math.NA and cs.NA | (2203.01799v1)

Abstract: Full waveform inversion (FWI) aims at reconstructing unknown physical coefficients in wave equations using the wave field data generated from multiple incoming sources. In this work, we propose an offline-online computational strategy for coupling classical least-squares based computational inversion with modern deep learning based approaches for FWI to achieve advantages that can not be achieved with only one of the components. In a nutshell, we develop an offline learning strategy to construct a robust approximation to the inverse operator and utilize it to design a new objective function for the online inversion with new datasets. We demonstrate through numerical simulations that our coupling strategy improves the computational efficiency of FWI with reliable offline training on moderate computational resources (in terms of both the size of the training dataset and the computational cost needed).

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.