Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Low-Cost On-device Partial Domain Adaptation (LoCO-PDA): Enabling efficient CNN retraining on edge devices (2203.00772v1)

Published 1 Mar 2022 in cs.CV and cs.AI

Abstract: With the increased deployment of Convolutional Neural Networks (CNNs) on edge devices, the uncertainty of the observed data distribution upon deployment has led researchers to to utilise large and extensive datasets such as ILSVRC'12 to train CNNs. Consequently, it is likely that the observed data distribution upon deployment is a subset of the training data distribution. In such cases, not adapting a network to the observed data distribution can cause performance degradation due to negative transfer and alleviating this is the focus of Partial Domain Adaptation (PDA). Current works targeting PDA do not focus on performing the domain adaptation on an edge device, adapting to a changing target distribution or reducing the cost of deploying the adapted network. This work proposes a novel PDA methodology that targets all of these directions and opens avenues for on-device PDA. LoCO-PDA adapts a deployed network to the observed data distribution by enabling it to be retrained on an edge device. Across subsets of the ILSVRC12 dataset, LoCO-PDA improves classification accuracy by 3.04pp on average while achieving up to 15.1x reduction in retraining memory consumption and 2.07x improvement in inference latency on the NVIDIA Jetson TX2. The work is open-sourced at \emph{link removed for anonymity}.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube