Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Descriptellation: Deep Learned Constellation Descriptors (2203.00567v2)

Published 1 Mar 2022 in cs.RO and cs.CV

Abstract: Current descriptors for global localization often struggle under vast viewpoint or appearance changes. One possible improvement is the addition of topological information on semantic objects. However, handcrafted topological descriptors are hard to tune and not robust to environmental noise, drastic perspective changes, object occlusion or misdetections. To solve this problem, we formulate a learning-based approach by modelling semantically meaningful object constellations as graphs and using Deep Graph Convolution Networks to map a constellation to a descriptor. We demonstrate the effectiveness of our Deep Learned Constellation Descriptor (Descriptellation) on two real-world datasets. Although Descriptellation is trained on randomly generated simulation datasets, it shows good generalization abilities on real-world datasets. Descriptellation also outperforms state-of-the-art and handcrafted constellation descriptors for global localization, and is robust to different types of noise. The code is publicly available at https://github.com/ethz-asl/Descriptellation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.