Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

On closed subgroups of precompact groups (2203.00334v2)

Published 1 Mar 2022 in math.GR and math.GN

Abstract: It is a Theorem of W.~ W. Comfort and K.~ A. Ross that if $G$ is a subgroup of a compact Abelian group, and $S$ denotes those continuous homomorphisms from $G$ to the one-dimensional torus, then the topology on $G$ is the initial topology given by $S$. {Assume that $H$ is a subgroup of $G$. We study how} the choice of $S$ affects the topological placement and properties of $H$ in $G$. Among other results, we have {made significant} progress toward the solution of the following specific questions: How many totally bounded group topologies does $G$ admit such that $H$ is a closed (dense) subgroup? If $C_S$ denotes the poset of all subgroups of $G$ that are $S$-closed, ordered by inclusion, does $C_S$ has a greatest (resp. smallest) element? We say that a totally bounded (topological, resp.) group is an \textit{SC-group} (\textit{topologically simple}, resp.) if all its subgroups are closed (if $G$ and ${e}$ are its only possible closed normal subgroups, resp.) {In addition, we investigate the following questions.} How many SC-(topologically simple totally bounded, resp.) group topologies does an arbitrary Abelian group $G$ admit?

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.