Papers
Topics
Authors
Recent
2000 character limit reached

Differentially private training of residual networks with scale normalisation (2203.00324v2)

Published 1 Mar 2022 in cs.LG and cs.CR

Abstract: The training of neural networks with Differentially Private Stochastic Gradient Descent offers formal Differential Privacy guarantees but introduces accuracy trade-offs. In this work, we propose to alleviate these trade-offs in residual networks with Group Normalisation through a simple architectural modification termed ScaleNorm by which an additional normalisation layer is introduced after the residual block's addition operation. Our method allows us to further improve on the recently reported state-of-the art on CIFAR-10, achieving a top-1 accuracy of 82.5% ({\epsilon}=8.0) when trained from scratch.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.