Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 28 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Asymptotic Normality of Gini Correlation in High Dimension with Applications to the K-sample Problem (2203.00081v2)

Published 28 Feb 2022 in math.ST and stat.TH

Abstract: The categorical Gini correlation proposed by Dang et al. is a dependence measure to characterize independence between categorical and numerical variables. The asymptotic distributions of the sample correlation under dependence and independence have been established when the dimension of the numerical variable is fixed. However, its asymptotic behavior for high dimensional data has not been explored. In this paper, we develop the central limit theorem for the Gini correlation in the more realistic setting where the dimensionality of the numerical variable is diverging. We then construct a powerful and consistent test for the $K$-sample problem based on the asymptotic normality. The proposed test not only avoids computation burden but also gains power over the permutation procedure. Simulation studies and real data illustrations show that the proposed test is more competitive to existing methods across a broad range of realistic situations, especially in unbalanced cases.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.