Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recent Advances and Challenges in Deep Audio-Visual Correlation Learning (2202.13673v1)

Published 28 Feb 2022 in cs.MM, cs.CV, cs.IR, cs.LG, and eess.AS

Abstract: Audio-visual correlation learning aims to capture essential correspondences and understand natural phenomena between audio and video. With the rapid growth of deep learning, an increasing amount of attention has been paid to this emerging research issue. Through the past few years, various methods and datasets have been proposed for audio-visual correlation learning, which motivate us to conclude a comprehensive survey. This survey paper focuses on state-of-the-art (SOTA) models used to learn correlations between audio and video, but also discusses some tasks of definition and paradigm applied in AI multimedia. In addition, we investigate some objective functions frequently used for optimizing audio-visual correlation learning models and discuss how audio-visual data is exploited in the optimization process. Most importantly, we provide an extensive comparison and summarization of the recent progress of SOTA audio-visual correlation learning and discuss future research directions.

Citations (5)

Summary

We haven't generated a summary for this paper yet.