Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Adversarial Contrastive Self-Supervised Learning (2202.13072v1)

Published 26 Feb 2022 in cs.CV, cs.AI, cs.LG, and cs.NE

Abstract: Recently, learning from vast unlabeled data, especially self-supervised learning, has been emerging and attracted widespread attention. Self-supervised learning followed by the supervised fine-tuning on a few labeled examples can significantly improve label efficiency and outperform standard supervised training using fully annotated data. In this work, we present a novel self-supervised deep learning paradigm based on online hard negative pair mining. Specifically, we design a student-teacher network to generate multi-view of the data for self-supervised learning and integrate hard negative pair mining into the training. Then we derive a new triplet-like loss considering both positive sample pairs and mined hard negative sample pairs. Extensive experiments demonstrate the effectiveness of the proposed method and its components on ILSVRC-2012.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube