Papers
Topics
Authors
Recent
2000 character limit reached

Model Comparison and Calibration Assessment: User Guide for Consistent Scoring Functions in Machine Learning and Actuarial Practice (2202.12780v3)

Published 25 Feb 2022 in stat.ML and cs.LG

Abstract: One of the main tasks of actuaries and data scientists is to build good predictive models for certain phenomena such as the claim size or the number of claims in insurance. These models ideally exploit given feature information to enhance the accuracy of prediction. This user guide revisits and clarifies statistical techniques to assess the calibration or adequacy of a model on the one hand, and to compare and rank different models on the other hand. In doing so, it emphasises the importance of specifying the prediction target functional at hand a priori (e.g. the mean or a quantile) and of choosing the scoring function in model comparison in line with this target functional. Guidance for the practical choice of the scoring function is provided. Striving to bridge the gap between science and daily practice in application, it focuses mainly on the pedagogical presentation of existing results and of best practice. The results are accompanied and illustrated by two real data case studies on workers' compensation and customer churn.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.