Derived projectivizations of complexes (2202.11636v4)
Abstract: In this paper, we study the counterpart of Grothendieck's projectivization construction in the context of derived algebraic geometry. Our main results are as follows: First, we define the derived projectivization of a connective complex, study its fundamental properties such as finiteness properties and functorial behaviors, and provide explicit descriptions of their relative cotangent complexes, We then focus on the derived projectivizations of complexes of perfect-amplitude contained in $[0,1]$. In this case, we prove a generalized Serre's theorem, a derived version of Beilinson's relations, and establish semiorthogonal decompositions for their derived categories. Finally, we show that many moduli problems fit into the framework of derived projectivizations, such as moduli spaces that arise in Hecke correspondences. We apply our results to these situations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.