Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Recognizing Concepts and Recognizing Musical Themes. A Quantum Semantic Analysis (2202.10941v1)

Published 17 Feb 2022 in cs.LG, cs.SD, eess.AS, and quant-ph

Abstract: How are abstract concepts and musical themes recognized on the basis of some previous experience? It is interesting to compare the different behaviors of human and of artificial intelligences with respect to this problem. Generally, a human mind that abstracts a concept (say, table) from a given set of known examples creates a table-Gestalt: a kind of vague and out of focus image that does not fully correspond to a particular table with well determined features. A similar situation arises in the case of musical themes. Can the construction of a gestaltic pattern, which is so natural for human minds, be taught to an intelligent machine? This problem can be successfully discussed in the framework of a quantum approach to pattern recognition and to machine learning. The basic idea is replacing classical data sets with quantum data sets, where either objects or musical themes can be formally represented as pieces of quantum information, involving the uncertainties and the ambiguities that characterize the quantum world. In this framework, the intuitive concept of Gestalt can be simulated by the mathematical concept of positive centroid of a given quantum data set. Accordingly, the crucial problem "how can we classify a new object or a new musical theme (we have listened to) on the basis of a previous experience?" can be dealt with in terms of some special quantum similarity-relations. Although recognition procedures are different for human and for artificial intelligences, there is a common method of "facing the problems" that seems to work in both cases.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.