Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Improving the performance of fermionic neural networks with the Slater exponential Ansatz (2202.10126v2)

Published 21 Feb 2022 in quant-ph and physics.chem-ph

Abstract: In this work, we propose a technique for the use of fermionic neural networks (FermiNets) with the Slater exponential Ansatz for electron-nuclear and electron-electron distances, which provides faster convergence of target ground-state energies due to a better description of the interparticle interaction in the vicinities of the coalescence points. Analysis of learning curves indicates on the possibility to obtain accurate energies with smaller batch sizes using arguments of the bagging approach. In order to obtain even more accurate results for the ground-state energies, we suggest an extrapolation scheme, which estimates Monte Carlo integrals in the limit of an infinite number of points. Numerical tests for a set of molecules demonstrate a good agreement with the results of original FermiNets (achieved with larger batch sizes than required by our approach) and with results of coupled-cluster singles and doubles with perturbative triples (CCSD(T)) method, calculated in the complete basis set (CBS) limit.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube