Papers
Topics
Authors
Recent
2000 character limit reached

Generalized Bayesian Additive Regression Trees Models: Beyond Conditional Conjugacy (2202.09924v1)

Published 20 Feb 2022 in stat.ML, cs.LG, and stat.ME

Abstract: Bayesian additive regression trees have seen increased interest in recent years due to their ability to combine machine learning techniques with principled uncertainty quantification. The Bayesian backfitting algorithm used to fit BART models, however, limits their application to a small class of models for which conditional conjugacy exists. In this article, we greatly expand the domain of applicability of BART to arbitrary \emph{generalized BART} models by introducing a very simple, tuning-parameter-free, reversible jump Markov chain Monte Carlo algorithm. Our algorithm requires only that the user be able to compute the likelihood and (optionally) its gradient and Fisher information. The potential applications are very broad; we consider examples in survival analysis, structured heteroskedastic regression, and gamma shape regression.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 10 likes.

Upgrade to Pro to view all of the tweets about this paper: